
Assignment 2 - Interpolation

March 18, 2025

1 Assignment 2: Interpolation de Lagrange
On considère la fonction

𝑓(𝑥) = 1 − ℎ(𝑔(𝑥)) avec ℎ(𝑦) = 1
1 − 2𝑦 + 4𝑦2 et 𝑔(𝑥) = 𝑥2 − 4

4
sur l’intervalle 𝐼 = [−3, 3].

1.1 Partie 1
1.1.1 Partie 1a

Calculer le polynôme d’interpolation Π𝑛𝑓(𝑥) de degré 𝑛 = 20
• avec des noeuds équidistribués ;
• avec les noeuds de Chebyshev ;

et comparer graphiquement les résultats obtenus avec la fonction donnée. Est-ce que l’interpolation
est toujours précise? Pourquoi? Y aurait-il des différences si nous utilisions l’interpolation
polynômiale à l’aide de la matrice de Vandermonde au lieu de l’interpolation de Lagrange? (Réponse
1)

[]: import numpy as np
import matplotlib.pyplot as plt

[]: # HELPER FUNCTIONS FOR LAGRANGE INTERPOLATION -- THESE ARE GIVEN TO YOU,␣
↪NOTHING TO COMPLETE !

def LagrangeBasis(t,k,z):
"""Evaluate the 'k'-th Lagrange basis function at 'z',

given the interpolatory points 't'.
INPUT:

t : array of interpolatory points
k : number of the basis function
z : array of points where to evaluate the basis

OUTPUT:
result: evaluation of the Lagrange basis function at 'z'

"""

n = t.shape[0] - 1

1

init result to one, of same type and size as z
result = np.zeros_like(z) + 1

first few checks on k:
if (type(k) is not int) or (t.shape[0] < 1) or (k > n) or (k < 0):

raise ValueError('Lagrange basis needs a positive integer k, smaller␣
↪than the size of t')

loop on n to compute the product
for j in range(n+1) :

if (j == k) :
continue

if (t[k] == t[j]) :
raise ValueError('All the interpolation points need to be distinct')

result *= (z - t[j]) / (t[k] - t[j])

return result

def LagrangeInterpolation(t,y,z):
"""Evaluate the Lagrange interpolant function at 'z',

given the interpolatory points 't' and the data 'y'.
INPUT:

t : array of interpolatory points
y : array of data to be interpolated
z : array of points where to evaluate the interpolant

OUTPUT:
result: evaluation of the interpolant function at 'z'

"""

{phi(t,k,.), k=0,...,n} is a basis of the polynomials of degree n
y represents the coordinates of the interpolating polynomial with respect␣

↪to this basis.
Therefore LagrangePi(t,y,.) = y[0] phi(t,0,.) + ... + y[n] phi(t,n,.)

n = t.size - 1

init result to zero, of same type and size as z
result = np.zeros_like(z)

loop on n to compute the product
for k in range(t.shape[0]) :

result += y[k] * LagrangeBasis(t,k,z)

return result

2

[]: # definition of the function to be interpolated
g1 = lambda x : (x**2 - 4) / 4
h = lambda y : 1 / (1 - 2*y + 4*y**2)
f = lambda x : 1 - h(g1(x))
a, b = -3, 3

[]: # EQUIDISTRIBUTED NODES - PLOT
x = np.linspace(a,b,1000) # fine partition, for nice plotting
n=20

xp = ## COMPLETE HERE !! ## (equispaced nodes in [a,b])
fn = ## COMPLETE HERE !! ## (interpolant polynomial)

plt.figure(figsize=(10,6))
COMPLETE HERE !! ## (plot the interpolant polynomial)
plt.plot(x, f(x), 'k')
plt.plot(xp, f(xp), 'ok')
plt.xlabel(r'\mathbf{x}', fontsize=20)
plt.ylabel(r'$\mathbf{f(x)}$', fontsize=20)
plt.legend([f"Lagrange Equi n={n}", '$ f(x)$'], fontsize=15)
plt.grid()
plt.title(f"Interpolation de Lagrange avec noeuds équirépartis - n={n}",

fontsize=15, fontweight="bold")
plt.show()

[]: # CHEBYSHEV NODES - PLOT
x = np.linspace(a,b,1000) # fine partition, for nice plotting
n=20

COMPLETE HERE : define xc as the Chebyshev nodes in [a,b]. (few lines of code)
xc =

fn = ## COMPLETE HERE !! ## (interpolant polynomial)

plt.figure(figsize=(10,6))
COMPLETE HERE !! ## (plot the interpolant polynomial)
plt.plot(x, f(x), 'k')
plt.plot(xc, f(xc), 'ok')
plt.xlabel(r'\mathbf{x}', fontsize=20)
plt.ylabel(r'$\mathbf{f(x)}$', fontsize=20)
plt.legend([f"Lagrange Chebyshev n={n}", '$ f(x)$'], fontsize=15)
plt.grid()
plt.title(f"Interpolation de Lagrange avec noeuds de Chebyshev - n={n}",

fontsize=15, fontweight="bold")
plt.show()

3

1.1.2 Commentaire

Réponse 1 Ecrivez ici votre reponse

1.1.3 Partie 1b

Èvaluer les erreurs d’interpolation

𝐸𝑎
𝑛(𝑓) = max

𝑥∈𝐼
|𝑓(𝑥)−Π𝑛𝑓(𝑥)| (erreur absolue) 𝐸𝑟

𝑛(𝑓) = max
𝑥∈𝐼

|𝑓(𝑥) − Π𝑛𝑓(𝑥)|
|𝑓(𝑥)| (erreur relative)

Visualiser le graphe logarithmique de l’erreur absolue 𝐸𝑎
𝑛 en fonction de 𝑛 pour les noeuds équiré-

partis et pour les noeuds de Chebyshev, avec 𝑛 = 5, 10, 15, … , 50. Est-ce que les résultats sont en
accord avec la théorie vue au cours ? (Réponse 2)

[]: # EQUIDISTRIBUTED NODES - ERRORS
Nrange = np.arange(5,51,5)
errorLag = []
errorLagRel = []
for n in Nrange:

xp = ## COMPLETE HERE !! ## (equispaced nodes in [a,b])
fn = ## COMPLETE HERE !! ## (interpolant polynomial)
errorLag.append() ## COMPLETE HERE !! # (absolute error)
errorLagRel.append() ## COMPLETE HERE !! # (relative error)

plt.figure(figsize=(10,6))
plt.plot(Nrange, errorLag, ':o');
plt.yscale('log')
plt.xlabel('Degree', fontsize=20, fontweight='bold')
plt.ylabel('Error', fontsize=20, fontweight='bold')
plt.grid()
plt.show()

[]: # CHEBYSHEV NODES - ERRORS
Nrange = np.arange(5,51,5)
errorChe = []
errorCheRel = []
for n in Nrange:

xc = ## COMPLETE HERE !! ## (Chebyshev nodes in [a,b], as before)
fn = ## COMPLETE HERE !! ## (interpolant polynomial)
errorChe.append() ## COMPLETE HERE !! # (absolute error)
errorCheRel.append() ## COMPLETE HERE !! # (relative error)

plt.figure(figsize=(10,6))
plt.plot(Nrange, errorChe, ':o')
plt.yscale('log')
plt.xlabel('Degree', fontsize=20, fontweight='bold')
plt.ylabel('Error', fontsize=20, fontweight='bold')

4

plt.grid()
plt.show()

1.1.4 Commentaire

Réponse 2 Ecrivez ici votre reponse

1.2 Partie 2
Ècrire une fonction PiecewiseInterpolation, qui implemente l’interpolation par intervalles. La
fonction a la structure suivante

def PiecewiseInterpolation(N, LocalOrder, a, b, f, z):
"""
This function implements piecewise interpolation considering (1) a user-defined number of subintervals, and (2) a user-defined polynomial degree in each subinterval.

INPUTS:
N: the number of subintervals
LocalOrder : order of the polynomial in each subinterval
a,b : global extrema of the interval
f : the values of the function at the interpolation nodes
z : where to evaluate the function

OUTPUTS:
result: the evaluation of the piecewise interpolant of f at z
"""

[]: from collections.abc import Iterable

def PiecewiseInterpolation(N, LocalOrder, a, b, f, z):
"""
This function implements piecewise interpolation considering (1) a␣

↪user-defined number of subintervals, and
(2) a user-defined polynomial degree in each subinterval.

INPUTS:
N: the number of subintervals
LocalOrder : order of the polynomial in each subinterval
a,b : global extrema of the interval
f : the values of the function at the interpolation nodes
z : where to evaluate the function

OUTPUTS:
result: the evaluation of the piecewise interpolant of f at z
"""

def localInterpolation(zk):
"""Interpolates the function f at the single point zk

5

"""

find out in which interval lies the point zk
i = 0
for k in range(x.shape[0] - 1):

if x[k] <= zk <= x[k+1]:
break

else:
i += 1

hereafter is an alternative code to detect the interval
i = np.where([x[k] <= zk <= x[k+1] for k in range(x.

↪shape[0]-1)])[0][0]

if zk is not in the interval, return constant function
if zk == x[i]:

return f(x[i])
elif zk == x[i+1]:

return f(x[i+1])

otherwise, compute the local interpolation nodes in the i-th interval
x_loc = ## COMPLETE HERE !! ## (local equispaced nodes)

return ## COMPLETE HERE !! ## (evaluation of the interpolant at zk)

H = (b-a)/N
if np.isclose(H,0) :

raise ValueError('PiecewiseInterpolation : a and b are too close!')

Intervals of constant length
x = ## COMPLETE HERE !! ## (points that define the sub-intervals)

if not isinstance(z, Iterable):
z = [z]

result = np.zeros_like(z)
for k, zk in enumerate(z) :

result[k] = ## COMPLETE HERE !! ## (interpolate f at the current point)␣
↪

return result

1.3 Partie 3
Considerer des noeuds équidistribués.

Calculer les polynômes interpolatoires par intervalles d’ordre 1,2,3 (c-à-d Π𝐻
1 𝑓(𝑥), Π𝐻

2 𝑓(𝑥), Π𝐻
3 𝑓(𝑥))

sur 𝑁 sous-intervalles de longeur 𝐻 = 𝑏−𝑎
𝑁 , avec 𝑁 = 5, 15, 30, 60 et comparer graphiquement les

6

résultats obtenus avec la fonction donnée.

Prendre 𝑁 = 5, 10, 15, … , 50 (nombre de sous-intervalles). Calculer les polynômes interpolatoires
par intervalles d’ordre 1,2,3 et évaluer les erreurs absolue et rélative (cf. Section 1). Visualiser les
graphes logarithmiques des erreures absolues 𝐸𝑎

𝐻 en fonction de 𝑁 . Est-ce que l’erreur diminue en
utilisant l’interpolation par intervalles? Pourquoi? (Réponse 3)

[]: localOrders = [1,2,3]

[]: # plots of piecewise interpolants of (local) degree 1,2,3

fig, axs = plt.subplots(1, 3, figsize=(30,10), sharey=True)

Nrangeplot = [5,15,30,60]
for cnt_o,order in enumerate(localOrders):

for n in Nrangeplot:
fn = ## COMPLETE HERE !! ## (piecewise interpolant polynomial of f of␣

↪degree 'order')
axs[cnt_o].plot(x, fn, ':', label=f"N={n}", linewidth=2)

for ax in axs:
ax.plot(x, f(x), 'k', label="f(x)", linewidth=3)
ax.legend(fontsize=20)
ax.set_xlabel(r'\mathbf{x}', fontsize=20)
ax.set_ylabel(r'$\mathbf{f(x)}$', fontsize=20)
ax.grid(visible=True, which='major', color='#666666', linestyle='-')
ax.minorticks_on()
ax.grid(visible=True, which='minor', color='#999999', linestyle='-',alpha=0.

↪2)

plt.show()

[]: # absolute error trends of piecewise interpolants of (local) degree 1,2,3

Nrange = np.arange(5,51,5)
errorPwi = np.zeros((len(localOrders), len(Nrange)))
errorPwiRel = np.zeros((len(localOrders), len(Nrange)))
for cnt_o,order in enumerate(localOrders):

for cnt_n,n in enumerate(Nrange):
fn = ## COMPLETE HERE !! ## (piecewise interpolant polynomial of f of␣

↪degree 'order')
errorPwi[cnt_o, cnt_n] = ## COMPLETE HERE !! ## (absolute error)
errorPwiRel[cnt_o, cnt_n] = ## COMPLETE HERE !! ## (relative error)

plt.figure(figsize=(10,6))
for cnt_o,order in enumerate(localOrders):

plt.semilogy(Nrange, errorPwi[cnt_o], ':o', label=f"order {order}")
plt.xlabel('Nombre de sous-intervalles', fontsize=20, fontweight='bold')

7

plt.ylabel('Error', fontsize=20, fontweight='bold')

plt.grid(visible=True, which='major', color='#666666', linestyle='-')
plt.minorticks_on()
plt.grid(visible=True, which='minor', color='#999999', linestyle='-',alpha=0.2)
plt.legend(fontsize=15)
plt.ylim([1e-4, None])
plt.show()

1.3.1 Commentaire

Réponse 3 Ecrivez ici votre reponse

1.4 Partie 4
Finalement, parmi les méthodes analysées, laquelle nous permet d’interpoler la fonction donnée
avec une erreur relative au plus de 10%, en minimisant le nombre de points où il faut évaluer la
fonction 𝑓? En regardant simplement la figure, justifiez votre réponse. (Réponse 4) (Réponse
4)

[]: plt.figure(figsize=(10,6))

#plt.plot(Nrange, errorLagRel, label = 'Lagrange')
plt.plot(Nrange, errorCheRel, '-v', label='Chebyshev')
for cnt_o, order in enumerate(localOrders):

plt.plot(Nrange, errorPwiRel[cnt_o], '-o', label=f'PWI - Order {order}')

tol = 0.1
plt.plot(Nrange, tol*np.ones(len(Nrange)), 'k-.', label='10% threshold',␣

↪linewidth=2)

plt.yscale('log')
plt.xlabel('n or N', fontsize=20, fontweight='bold')
plt.ylabel('Error', fontsize=20, fontweight='bold')
plt.grid(which='major', linestyle='-', linewidth=1)
plt.minorticks_on()
plt.grid(which='minor', color='#999999', linestyle='--',alpha=0.2)
plt.legend(fontsize=12, bbox_to_anchor=(0.975, 0.975), borderaxespad=0)
plt.show()

1.4.1 Commentaire

Réponse 4 Ecrivez ici votre reponse

2 Quelques petites questions finales (pas évaluées)
• What types of collaboration strategies did your group use?

8

– Work in pairs on different sections.
– Work individually on different sections.
– Work together on the same section with one notebook opened.
– Work together on the same section with multiple notebooks opened.
– Other (please specify).

• How effective was your collaboration strategy today? Please rate from 1 (not at all) to 5
(very effective).

• How supported did you feel by your TA during the session today? Please rate from 1 (not at
all) to 5 (very effective).

Please report your answers here. Thank you!

9

	Assignment 2: Interpolation de Lagrange
	Partie 1
	Partie 1a
	Commentaire
	Partie 1b
	Commentaire

	Partie 2
	Partie 3
	Commentaire

	Partie 4
	Commentaire

	Quelques petites questions finales (pas évaluées)

